
WEEKLY EPIDEMIOLOGY BULLETIN

NATIONAL EPIDEMIOLOGY UNIT, MINISTRY OF HEALTH, JAMAICA

MEASLES

spreads throughout the body.

4 days after the rash erupts.

Measles is a highly contagious, serious disease caused by a virus. Before the introduction of measles vaccination, major occurred approximately every 2-3 estimated 2.6 million deaths each

Measles is caused by a virus in the paramyxovirus family and it is normally passed through direct contact and through the air. The virus

vaccine in 1963 and widespread

infects the respiratory tract, then

epidemics years and measles caused an

SYNDROMES

PAGE 2

CLASS 1 DISEASES PAGE 4

INFLUENZA

PAGE 5

DENGUE FEVER

PAGE 6

GASTROENTERITIS

PAGE 7

RESEARCH PAPER

PAGE 8

hands and feet. The rash lasts for 5 to 6 days, and then fades. On average, the rash occurs 14 days after exposure to the virus (within a range of 7 to 18 days). Unvaccinated young children are at highest risk of measles and its

The first sign of measles is usually a high fever, which begins about 10 to 12

days after exposure to the virus, and lasts 4 to 7 days. A runny nose, a cough, red and watery eyes, and small white spots inside the cheeks can develop in the initial stage. After several days, a rash erupts, usually on the face and upper neck. Over about 3 days, the rash spreads, eventually reaching the

Measles is a human disease and is not known to occur in animals. It is spread by coughing and sneezing, close personal contact or direct contact with infected nasal or throat secretions. The virus remains active and contagious in the air or on infected surfaces for up to 2 hours. It can be transmitted by an infected person from 4 days prior to the onset of the rash to

complications, including death. Unvaccinated pregnant women are also at risk. Any non-immune person (who has not been vaccinated or was vaccinated but did not develop immunity) can become infected.

Measles outbreaks can result in epidemics that cause many deaths, especially among young, malnourished children. In countries where measles has been largely eliminated, cases imported from other countries remain an important source of infection.

No specific antiviral treatment exists for measles virus.

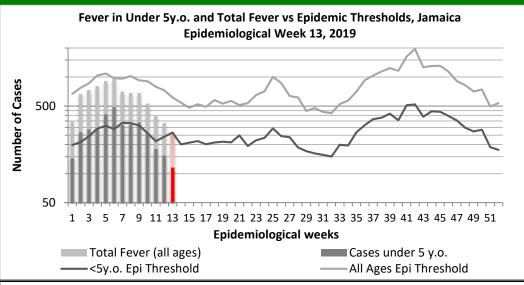
Routine measles vaccination for children, combined with mass immunization campaigns in countries with high case and death rates, are key public health strategies to reduce global measles deaths. The measles vaccine has been in use for over 50 years. It is safe, effective and inexpensive. It costs approximately one US dollar to immunize a child against measles.

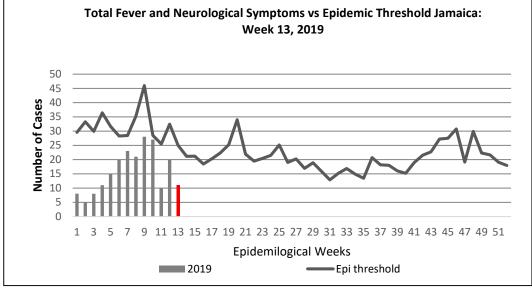
The measles vaccine is often incorporated with rubella and/or mumps vaccines. It is equally safe and effective in the single or combined form. Adding rubella to measles vaccine increases the cost only slightly, and allows for shared delivery and administration costs.

Source: https://www.who.int/news-room/fact-sheets/detail/measles

REPORTS FOR SYNDROMIC SURVEILLANCE

FEVER

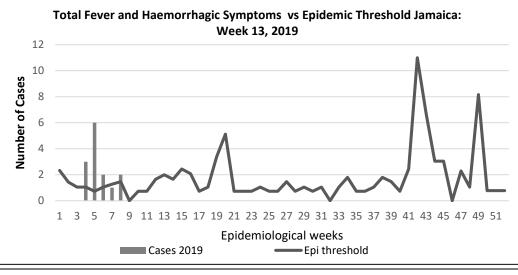

Temperature of >38°C $/100.4^{0}F$ (or recent history of fever) with or without an obvious diagnosis or focus of infection.



WEEK

FEVER AND NEUROLOGICAL

Temperature of >38°C $/100.4^{\circ}$ F (or recent history of fever) in a previously healthy person with or without headache and vomiting. The person must also have meningeal irritation, convulsions, altered consciousness, altered sensory manifestations or paralysis (except AFP). €曲

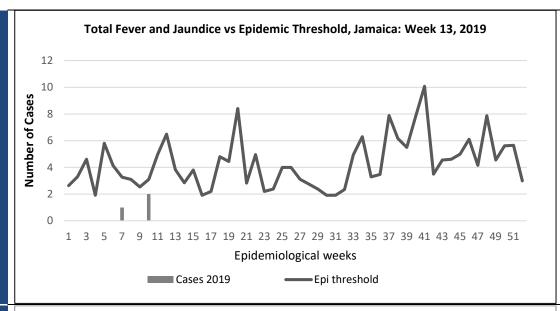


FEVER AND **HAEMORRHAGIC**

Temperature of $>38^{\circ}C$ /100.40F (or recent history of fever) in a previously healthy person presenting with at least one haemorrhagic (bleeding) manifestation with or without jaundice.

2 NOTIFICATIONS-All clinical sites

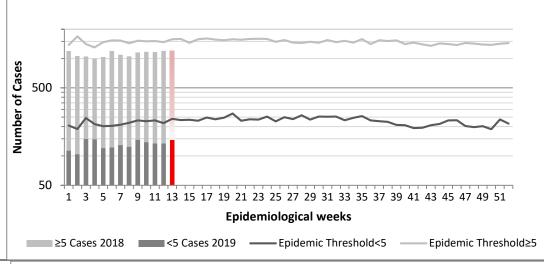
INVESTIGATION REPORTS- Detailed Follow up for all Class One Events


HOSPITAL **ACTIVE** SURVEILLANCE-30 sites. Actively pursued

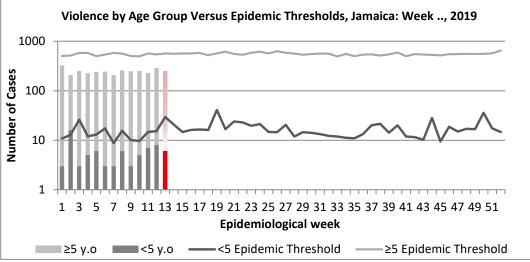
FEVER AND JAUNDICE

Temperature of $>38^{\circ}C$ /100.4°F (or recent history of fever) in a previously healthy person presenting with jaundice.

The epidemic threshold is used to confirm the emergence of an epidemic in order to implement control measures. It is calculated using the mean reported cases per week plus 2 standard deviations.


ACCIDENTS

Any injury for which the cause is unintentional, e.g. motor vehicle, falls, burns, etc.


Accidents by Age Group vs Epidemic Thresholds, Jamaica: Week 13, 2019

VIOLENCE

Any injury for which the cause is intentional, e.g. gunshot wounds, stab wounds, etc.

3 NOTIFICATIONS-All clinical sites

INVESTIGATION REPORTS- Detailed Follow up for all Class One Events

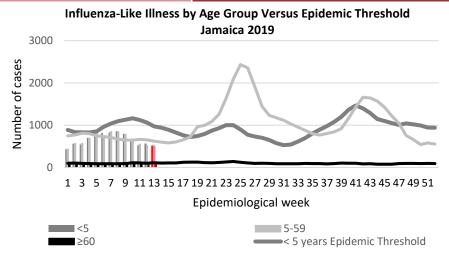
HOSPITAL ACTIVE SURVEILLANCE-30 sites. Actively pursued

CLA	SS ONE NO	ΓIFIABLE EVEN	IS		Comments		
			CONFIR	CONFIRMED YTD			
	CLASS 1 E	VENTS	CURRENT YEAR	PREVIOUS YEAR	from WHO indicate that for an		
j	Accidental F	oisoning ¹	6	40	effective surveillance		
√NO	Cholera		0	0	system, detection		
ATI	Dengue Hen	norrhagic Fever ²	0	0	rates for AFP should be		
NATIONAL /INTERNATIONAL INTEREST	Hansen's Di	sease (Leprosy)	0	0	1/100,000		
L /INTERN	Hepatitis B		1	6	population under 15 years old (6 to		
	Hepatitis C		1	1	7) cases annually.		
√NO	HIV/AIDS		NA	NA			
ATI	Malaria (Im	ported)	0	0	Pertussis-like syndrome and		
Z	Meningitis (Clinically confirmed)	1	21	Tetanus are		
EXOTIC/ UNUSUAL	Plague		0	0	clinically confirmed		
/LI	Meningococ	cal Meningitis	0	0	classifications.		
H IGH MORBIDIT/ MORTALIY	Neonatal Te	tanus	0	0	Numbers in brackets		
H I OR OR	Typhoid Fev	er	0	0	indicate combined suspected and confirmed		
$\Sigma \Sigma$	Meningitis I	I/Flu	0	0	Accidental Poisoning		
	AFP/Polio		0	0	cases ² Dengue Hemorrhagic		
	Congenital I	Rubella Syndrome	0	0	Fever data include Dengue related deaths;		
Ñ	Congenital S	Syphilis	0	0	³ Figures include all		
1MES	Fever and	Measles	0	0	deaths associated with pregnancy reported for		
ZAIN	Rash	Rubella	0	0	the period.		
[DO]	Maternal De	aths ³	14	33	⁴ CHIKV IgM positive - cases		
. PR	Ophthalmia	Neonatorum	45	82	⁵ Zika PCR		
ZIAI	Pertussis-lik	e syndrome	0	0	positive cases		
SPECIAL PROGRAM	Rheumatic F	ever	0	0			
	Tetanus		0	0			
	Tuberculosis	3	5	8			
	Yellow Feve	er	0	0			
	Chikunguny	a^4	0	0			
	Zika Virus ⁵ IFICATIONS-		0	0	NA- Not Available		

4 NOTIFICATIONS-All clinical sites

INVESTIGATION
REPORTS- Detailed Follow
up for all Class One Events

ACTIVE SURVEILLANCE-30 sites. Actively pursued



NATIONAL SURVEILLANCE UNIT INFLUENZA REPORT

EW 13

March 24-30, 2019 Epidemiological Week 13

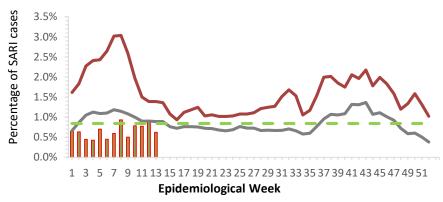
February 2019									
	EW 13	YTD							
SARI cases	11	150							
Total Influenza positive Samples	3	196							
Influenza A	2	184							
H3N2	0	15							
H1N1pdm09	1	126							
Not subtyped	1	43							
Influenza B	1	12							
Parainfluenza	0	2							

Comments:

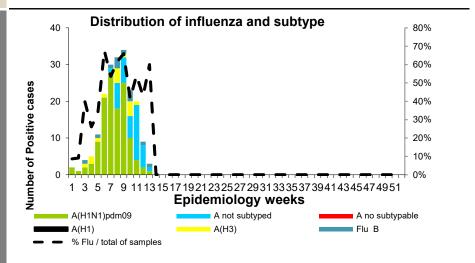
Swine flu is a respiratory disease caused by the influenza virus (Influenza A H1N1 and H3N2) that infect the respiratory tract of pigs and result in a barking cough, decreased appetite, nasal secretions and listless behaviour.

Occasionally, it may be transmitted to humans in very close contact.

In 2009, the new Influenza A (H1N1) virus that emerged and led to a pandemic was designated as Influenza A (H1N1) pdm09 virus to distinguish it from the seasonal Influenza A (H1N1).


During EW 13 SARI activity remained below the seasonal threshold, similar to the previous seasons for the same period. Decreased influenza activity was reported; with influenza A(H1N1)pdm09 predominating in previous weeks

GLOBAL AND REGIONAL UPDATES


Worldwide: Seasonal influenza subtype A accounted for the majority of influenza detections.

Caribbean: Influenza activity decreased and RSV activity was reported in most of the subregion. In Cuba and Haiti, the greatest activity of SARI was associated with influenza A (H1N1) pdm09

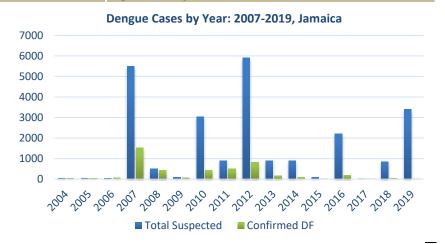
Jamaica: Percentage of Hospital Admissions for Severe Acute Respiratory Illness (SARI 2019) (compared with 2011-2018)

SARI 2019 —— Alert Threshold —— Seasonal Threshold — Seasonal Threshold

5 NOTIFICATIONS-All clinical sites

INVESTIGATION REPORTS- Detailed Follow up for all Class One Events

HOSPITAL ACTIVE SURVEILLANCE-30 sites. Actively pursued



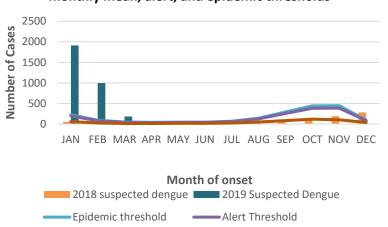
Dengue Bulletin

March 24-30, 2019 Epidemiological Week 13

Epidemiological Week 13

Reported suspected and confirmed dengue with symptom onset in weeks 1-11, 2019

		20	19	2018 YTD	
		EW 13	YTD		
	cted Dengue ises	1	3297	1292	
	ned Dengue ses	0	16	0	
tMED	*DHF/DSS	0	0	0	
CONFIRMED	Dengue Related Deaths	1	2	1	


Dengue fever Febrile phase Critical phase sudden-onset fever hypotension headache pleural effusion ascites mouth and nose gastrointestinal bleeding muscle and joint pains Recovery phase altered level of vomiting consciousness seizures rash itching diarrhea slow heart rate

Symptoms of

*DHF/DSS: Dengue Haemorrhagic Fever/ Dengue Shock Syndrome <u>Points to note</u>:

- Only PCR positive dengue cases are reported as confirmed.
- IgM positive cases are classified as presumed dengue.

Suspected dengue cases for 2018 and 2019 versus monthly mean, alert, and epidemic thresholds

囯

6 NOTIFICATIONS-All clinical sites

INVESTIGATION REPORTS- Detailed Follow up for all Class One Events

Monthly mean

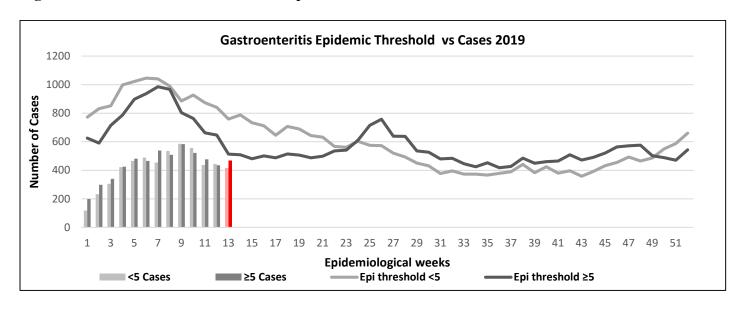
HOSPITAL ACTIVE SURVEILLANCE-30 sites. Actively pursued

Gastroenteritis Bulletin

March 24-30, 2019 Epidemiological Week 13 Epidemiological Week 13

EW 13

**7 11	D 11	CO	4 • 4 •	
Weekiv	Breakdown	of Gastro	oenteritis	cases


Year		EW 13		YTD			
	<5	≥5	Total	<5	≥5	Total	
2019	415	468	883	5,465	5,745	11,210	
2018	129	207	336	2,442	3,359	5,801	

Gastroenteritis:

In epidemiological week 13, 2019, the total number of reported GE cases showed a 163% increase compared to EW 13 of the previous year.

The year to date figures showed a 93% increase in cases for the period.

Figure 1: Total Gastroenteritis Cases Reported 2018-2019

Total number of GE cases per parish up to Week 13, 2019

Parishes	KSA	STT	POR	STM	STA	TRE	STJ	HAN	WES	STE	MAN	CLA	STC
<5	2151	154	67	263	439	315	425	115	247	178	547	259	305
≥5	1411	268	118	408	631	307	412	142	289	238	656	473	392

RESEARCH PAPER

Title: A Review of the 1918 Influenza Pandemic - The Jamaica Experience

Authors: Iyanna Wellington, Ardene Harris, Nicolas Elias, Shara Williams, Kelly-Ann Gordon-Johnson, Nathlee McMorris, Neisha Vanhorne, Lesley-Ann James, Andriene Grant, Karen Webster-Kerr

Institution: National Epidemiology Unit, Ministry of Health, Jamaica

Corresponding Author / Presenter: Dr Iyanna Wellington at wellingtoni@moh.gov.jm

ABSTRACT

Objective: To describe the 1918 influenza pandemic in Jamaica and explore the socio-political and healthcare contexts of the event.

Methods: Reviewed documents to obtain data on demographic parameters, hospital admissions for influenza, social conditions, and health system response.

Results: The Jamaican population in 1918 was 809,005 (384,319 males and 424,686 females). Health care was delivered by a network of: private practices, hospitals, infirmaries, and dispensaries.

The 1918 influenza pandemic started in January; the first recorded case of pandemic influenza in Jamaica occurred around October 1918 and by December the pandemic in Jamaica waned. In 1918/19 the proportion of influenza hospitalizations was 157 times greater than the mean for the preceding 10 years (1,412/10,000 versus 9/10,000). The influenza-specific death rate in 1918/19 was 3,288/10,000 in hospitalized patients while the maximum annual influenza-specific death rate in non-outbreak years was 80/10,000. The crude death rate declined by 32% from 1918/19 to 1919/20.

The First World War, local riots, food shortages, and recent hurricanes may have challenged the local authorities' reaction to the emergence of the pandemic in Jamaica. The response to the outbreak included: school closures, bans on public gatherings, disinfection of public transport, local travel bans, hiring of additional sanitary workers, opening of emergency hospitals and soup kitchens, health education, and policy changes.

Conclusion: The 1918 influenza outbreak in Jamaica was sudden and severe. The response to the 1918 influenza outbreak was affected by the socio-political realities of the day, which should be kept in mind for future pandemic preparedness planning.

