Health Law

Overview—Law for Universal Health Coverage (UHC): For all aspects of health, there are binding rules that govern the rights and responsibilities of governments, health workers, companies, civil society and a country’s population. Together these rules make up the legal framework, or legal architecture for health. They take many forms including: statutory laws, regulatory and administrative laws, contracts, case law, and customary laws. Who is involved in making these rules, and the form they take, differs from country to country. Health laws are used to formalize commitment to goals, such as the goal of universal health coverage, creating a drive for action. To enable cooperation and achieve health goals, people use law to create different organizations (such as hospitals) and relationships (such as contracts for providing health services). In turn, organizations (whether health ministries, the private sector or civil society) have mandates, policies and strategies based on legal rules that guide their work. There are also many rules that structure what health organizations and individuals should do, and what they may not do. This interaction between different health laws results in health system functions being carried out and health products and services being delivered.

Governments use health laws for: 1. Establishing important health policy goals (including universal health coverage). 2. Implementing health policy. 3. Enabling the effective operation of key health system functions and regulating inputs (service provision, health workforce, medical products and technologies, financing, health information and governance). 4. Creating the health systems architecture, establishing health organizations and networks, establishing mandates, duties and accountabilities. 5. Managing and responding to risks to personal health and a country’s health security. 6. Applying international health agreements and development goals at country level. 7. Build strong foundations for good governance to enable meaningful participation by all types of individuals and health stakeholders, protect rights and define responsibilities. 8. Establish predictable, appropriate and fair rules for facilitating the operation of health markets and setting norms for responsible health behavior.

How does law create UHC? 1. By providing legal recognition of access rights to essential health services, essential medicines and vaccines and by removing legal access barriers to universal access including discrimination. UHC can be defined as “the existence of a legal mandate for universal access to health services and evidence that the vast majority of the population has meaningful access to these services”. All countries that have achieved UHC have legislated to formalize the commitment UHC. 2. By ensuring financial protection. UHC financing reforms aimed at providing financial protection, rely on legal mechanisms. Revenue raising, pooling, purchasing, and the definition of a countries benefit package all rely on law. 3. By assuring health care quality. Six health care quality objectives are critical to efforts towards UHC: safety, equity, efficacy, patient centeredness, efficiency, timeliness, all rely on law for their achievement. Legal tools for UHC quality include: standard setting, licensing of health workers and products, accreditation of health services and facilities, clinical protocols, reporting systems, establishing monitoring and accountability mechanisms and processes, compliance monitoring, auditing and the use of sanctions.
A syndromic surveillance system is good for early detection of and response to public health events.

Sentinel surveillance occurs when selected health facilities (sentinel sites) form a network that reports on certain health conditions on a regular basis, for example, weekly. Reporting is mandatory whether or not there are cases to report.

Jamaica's sentinel surveillance system concentrates on visits to sentinel sites for health events and syndromes of national importance which are reported weekly (see pages 2-4). There are seventy-eight (78) reporting sentinel sites (hospitals and health centres) across Jamaica.

FEVER
Temperature of >38°C /100.4°F (or recent history of fever) with or without an obvious diagnosis or focus of infection.

KEY
VARIATIONS OF BLUE SHOW CURRENT WEEK

REPORTS FOR SYNDROMIC SURVEILLANCE
FEVER AND NEUROLOGICAL
Temperature of >38°C /100.4°F (or recent history of fever) in a previously healthy person with or without headache and vomiting. The person must also have meningeal irritation, convulsions, altered consciousness, altered sensory manifestations or paralysis (except AFP).

FEVER AND HAEMORRHAGIC
Temperature of >38°C /100.4°F (or recent history of fever) in a previously healthy person presenting with at least one haemorrhagic (bleeding) manifestation with or without jaundice.

FEVER AND JAUNDICE
Temperature of >38°C /100.4°F (or recent history of fever) in a previously healthy person presenting with jaundice.

The epidemic threshold is used to confirm the emergence of an epidemic in order to implement control measures. It is calculated using the mean reported cases per week plus 2 standard deviations.
NOTIFICATIONS - All clinical sites

INVESTIGATION REPORTS - Detailed Follow up for all Class One Events

HOSPITAL ACTIVE SURVEILLANCE - 30 sites. Actively pursued

SENTINEL REPORT - 78 sites. Automatic reporting

ACCIDENTS
Any injury for which the cause is unintentional, e.g. motor vehicle, falls, burns, etc.

VIOLENCE
Any injury for which the cause is intentional, e.g. gunshot wounds, stab wounds, etc.

GASTROENTERITIS
Inflammation of the stomach and intestines, typically resulting from bacterial toxins or viral infection and causing vomiting and diarrhoea.

KEY VARIATIONS OF BLUE SHOW CURRENT WEEK
CLASS ONE NOTIFIABLE EVENTS

<table>
<thead>
<tr>
<th>Class One Events</th>
<th>Confirmed YTD<sup>α</sup></th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURRENT YEAR 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accidental Poisoning</td>
<td>70</td>
<td>AFP Field Guides from WHO indicate that for an effective surveillance system, detection rates for AFP should be 1/100,000 population under 15 years old (6 to 7) cases annually.</td>
</tr>
<tr>
<td>Cholera</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dengue Hemorrhagic Fever<sup>γ</sup></td>
<td>See Dengue page below</td>
<td></td>
</tr>
<tr>
<td>Hansen’s Disease (Leprosy)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Malaria (Imported)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Meninagitis (Clinically confirmed)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EXOTIC/UNUSUAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plague</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meningococcal Meningitis</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Neonatal Tetanus</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Typhoid Fever</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meningitis H/Flu</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH MORBIDITY/MORTALITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP/Polio</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Congenital Rubella Syndrome</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Congenital Syphilis</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fever and Rash</td>
<td>Measles</td>
<td></td>
</tr>
<tr>
<td>Rubella</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Maternal Deaths<sup>δ</sup></td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Ophthlamia Neonatorum</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Pertussis-like syndrome</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rheumatic Fever</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetanus</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Yellow Fever</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chikungunya<sup>ε</sup></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Zika Virus<sup>θ</sup></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

^α Figures are cumulative totals for all epidemiological weeks year to date.

^β Updates made to prior weeks in 2020.

^γ Dengue Hemorrhagic Fever data include Dengue related deaths;

^δ Figures include all deaths associated with pregnancy reported for the period.

^ε CHIKV IgM positive cases

^θ Zika PCR positive cases

^{NA}- Not Available
NATIONAL SURVEILLANCE UNIT

INFLUENZA REPORT

December 06, 2020 – December 12, 2020 Epidemiological Week 50

EW 50

Epi Week Summary

During EW 50, 5 (five) SARI admissions were reported.

Caribbean Update EW 50

Caribbean: Influenza and other respiratory virus activity remained low in the subregion. In Haiti, SARI activity increased above epidemic levels.

EW 50 YTD

<table>
<thead>
<tr>
<th></th>
<th>EW 50</th>
<th>YTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARI cases</td>
<td>5</td>
<td>648</td>
</tr>
<tr>
<td>Total Influenza positive Samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza A</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>H3N2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>H1N1pdm09</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>Not subtyped</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Influenza B</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>Parainfluenza</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Weekly visits to Sentinel Sites for Influenza-like Illness (ILI) All ages 2020 vs Weekly Threshold, Jamaica

![Graph showing weekly visits to Sentinel Sites for Influenza-like Illness (ILI) All ages 2020 vs Weekly Threshold, Jamaica](chart.png)

Epidemiologic week

- 2020
- Epidemic Threshold <5
- Epidemic Threshold 5-59
- Epidemic Threshold ≥60

Jamaica: Percentage of Hospital Admissions for Severe Acute Respiratory Illness (SARI 2020) (compared with 2011-2019)

![Graph showing percentage of hospitalizations for SARI in Jamaica](chart.png)

- SARI 2020
- Alert Threshold
- Average epidemic curve (2011-2019)
- Seasonal Threshold
- Epidemic Threshold

Distribution of Influenza and other Respiratory Viruses in Surveillance by EW

![Graph showing distribution of influenza and other respiratory viruses in surveillance by EW](chart.png)

- A(H1N1)pdm09
- A not subtyped
- A no subtable
- B: Subtypes
- Coronavirus
- RSV
- Others
- Flu B Positives
- % Positives

NOTIFICATIONS

- All clinical sites

INVESTIGATION REPORTS

- Detailed Follow up for all Class One Events

HOSPITAL ACTIVE SURVEILLANCE

- 30 sites. Actively pursued

SENTINEL REPORT

- 78 sites. Automatic reporting
Dengue Bulletin

December 06, 2020 – December 12, 2020 Epidemiological Week 50
December 06, 2020 – December 12, 2020 Epidemiological Week 50

Reported suspected and confirmed dengue with symptom onset in week 50 of 2020

<table>
<thead>
<tr>
<th></th>
<th>2020*</th>
</tr>
</thead>
<tbody>
<tr>
<td>EW 50</td>
<td></td>
</tr>
<tr>
<td>YTD</td>
<td></td>
</tr>
</tbody>
</table>

Total Suspected Dengue Cases	0	824
Lab Confirmed Dengue cases	0	15
CONFIRMED Dengue Related Deaths	0	1

Points to note:
- * figure as at December 10, 2020
- Only PCR positive dengue cases are reported as confirmed.
- IgM positive cases are classified as presumed dengue.

Symptoms of Dengue fever

Dengue Cases by Year: 2004-2020, Jamaica

Suspected dengue cases for 2018 and 2019 versus monthly mean, alert, and epidemic thresholds

Number of Cases

- **2018 suspected dengue**
- **2019 Suspected Dengue**
- **2020**
- **Epidemic threshold**
- **Alert Threshold**
- **Monthly mean**

Month of onset

Number of Cases

- JAN
- FEB
- MAR
- APR
- MAY
- JUN
- JUL
- AUG
- SEP
- OCT
- NOV
- DEC

Total Suspected Dengue Cases

Lab Confirmed Dengue cases

CONFIRMED Dengue Related Deaths

Epidemiological Week 50

ISSN 0799-3927

Released December 29, 2020
ABSTRACT

Title: “Anthropometry and food frequency in chronic non-communicable disease: associations in a clinic population”

Authors: S. Robinson, S. Dawson

Objective: To investigate the relation of body mass index (BMI) and waist circumference (WC) to frequency of consumption of commonly consumed foods, in patients enrolled at a Type V Health Centre in Kingston.

Method: Twenty-four adult patients (22 females) attending the CNCD Clinic were conveniently selected for the study, with a cross-sectional analysis being conducted on these patients. Participants were selected if they were diagnosed with at least one CNCD. Their weights, heights, and waist circumferences were measured and data on the frequency of consumption of selected foods acquired utilizing an administered questionnaire. The main outcome measure was a correlation between anthropometry and food frequency.

Results: Of the 24 subjects, 23 had a BMI >25.0 with 22 having a waist circumference exceeding the recommended limit (Females = 89 cm and Males = 101 cm). Mean BMI was 34.3 ± 7.4 with mean WC being 104.9 ± 17.7 cm. Neither BMI nor WC was significantly associated with frequency of consumption of any food item from the different Food Groups, but positive correlations were identified between BMI and age (p<0.0001), and BMI and WC (p=0.00051).

Conclusion: No statistically significant associations were found between BMI, Waist Circumference and food frequency in this population. A follow-up study (larger sample size, other food intake measures) is recommended to demystify whatever link may exist between anthropometry and food intake. Alongside BMI measurements, WC could be used routinely in the nutritional assessment of CNCD patients at Health facilities.