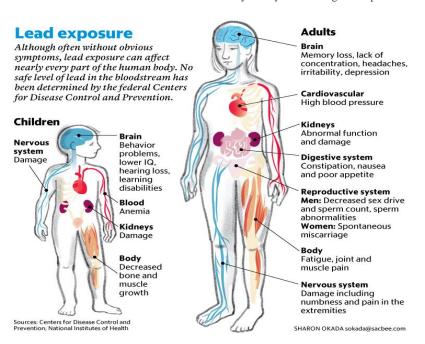
WEEKLY EPIDEMIOLOGY BULLETIN

NATIONAL EPIDEMIOLOGY UNIT, MINISTRY OF HEALTH & WELLNESS, JAMAICA

Lead Poisoning

LEAD EXPOSURE CAN OCCUR THROUGH... Inhalation of particles released by industry or recycling of contaminated soil or dust from decaying lead paint particularly when children play on the ground and put toys or fingers in their mouths products such as lead-glazed ceramics and some traditional medicines or cosmetics Food or water contaminated with lead


Key facts

- Lead is a cumulative toxicant that affects multiple body systems and is particularly harmful to young children.
- Lead in the body is distributed to the brain, liver, kidney and bones. It is stored in the teeth and bones, where it accumulates over time. Human exposure is usually assessed through the measurement of lead in blood.
- Lead in bone is released into blood during pregnancy and becomes a source of exposure to the developing fetus.
- There is no level of exposure to lead that is known to be without harmful effects.
- Lead exposure is preventable.

Sources and routes of exposure

People can become exposed to lead through occupational and environmental sources. This mainly results from: inhalation of lead particles generated by burning materials containing lead, for example during smelting, recycling, stripping leaded paint and using leaded aviation fuel; and ingestion of lead-contaminated dust, water (from leaded pipes) and food (from lead-glazed or lead-soldered containers).

An additional source of exposure is the use of certain types of traditional medicines and cosmetics. High levels of lead have, for example, been reported in certain types of kohl, as well as in some traditional medicines used in countries such as India, Mexico and Viet Nam. Consumers should therefore take care only to buy and use regulated products.

Source: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health

EPI WEEK 2

SYNDROMES

PAGE 2

CLASS 1 DISEASES

PAGE 4

INFLUENZA

PAGE 5

DENGUE FEVER

PAGE 6

GASTROENTERITIS

PAGE 7

RESEARCH PAPER

PAGE 8

SENTINEL SYNDROMIC SURVEILLANCE

Sentinel Surveillance in Jamaica

A syndromic surveillance system is good for early detection of and response to public health events.

Sentinel surveillance occurs when selected health facilities (sentinel sites) form a network that reports on certain health conditions on a regular basis, for example, weekly. Reporting is mandatory whether or not there are cases to report.

Jamaica's sentinel surveillance system concentrates on visits to sentinel sites for health events and syndromes of national importance which are reported weekly (see pages 2 -4). There are seventy-eight (78) reporting sentinel sites (hospitals and health centres) across Jamaica.

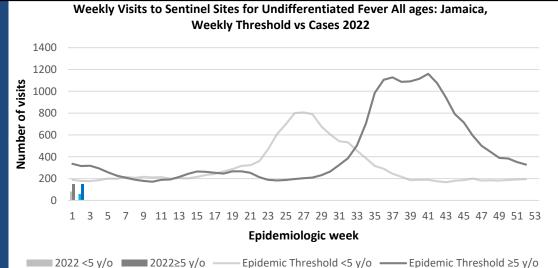
Table showcasing the
Timeliness of Weekly
Sentinel Surveillance
Parish Reports for the Four
Most Recent
Epidemiological Weeks –
51, 2021 to 2 of 2022

Parish health departments submit reports weekly by 3 p.m. on Tuesdays. Reports submitted after 3 p.m. are considered late.

KEY:

Yellow- late submission on Tuesday

Red – late submission after Tuesday


Epi week	Kingston and Saint Andrew	Saint Thomas	Saint Catherine	Portland	Saint Mary	Saint Ann	Trelawny	Saint James	Hanover	Westmoreland	Saint Elizabeth	Manchester	Clarendon
2022													
51													
	On Time	On Time	On Time	On Time	On Time	On Time	On Time	On Time	On Time	On Time	On Time	On Time	On Time
52	On Time	On Time	On Time	On Time	On Time	Late (T)	Late (T)	Late (T)	On Time	On Time	On Time	On Time	On Time
1	On Time	Late (T)	Late (T)	On Time	On Time	On Time	On Time	Late (T)	On Time	On Time	On Time	On Time	On Time
2	On Time	On Time	On Time	On Time	On Time	On Time	Late (W)	On Time	On Time	On Time	On Time	On Time	On Time

REPORTS FOR SYNDROMIC SURVEILLANCE

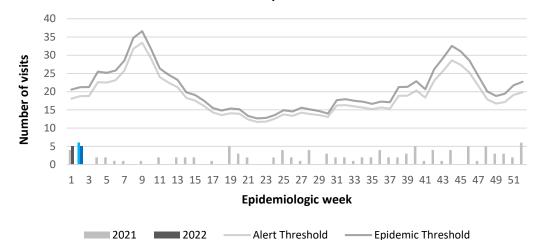
Temperature of $>38^{\circ}C$ /100.4°F (or recent history of fever) with or without an obvious diagnosis or focus of infection.

VARIATIONS OF BLUE SHOW CURRENT WEEK

2 NOTIFICATIONS-All clinical sites

INVESTIGATION REPORTS- Detailed Follow up for all Class One Events

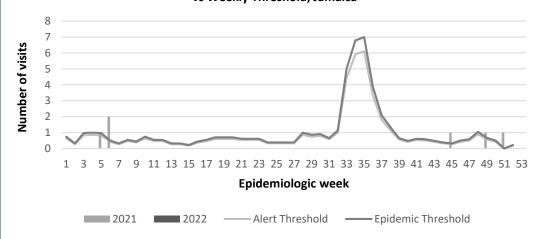
HOSPITAL ACTIVE SURVEILLANCE-30 sites. Actively pursued



FEVER AND NEUROLOGICAL

Temperature of >38°C /100.4°F (or recent history of fever) in a previously healthy person with or without headache and vomiting. The person must also have meningeal irritation, convulsions, altered consciousness, altered sensory manifestations or paralysis (except AFP).

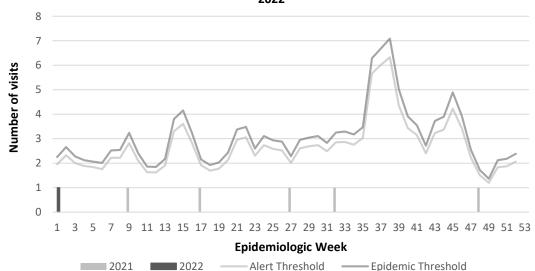
Weekly Visits to Sentinel Sites for Fever and Neurological Symptoms 2021 and 2022 vs. Weekly Threshold: Jamaica



FEVER AND HAEMORRHAGIC

Temperature of $>38^{\circ}C$ $/100.4^{\circ}F$ (or recent history of fever) in a previously healthy person presenting with at least one haemorrhagic (bleeding) manifestation with or without jaundice.

Weekly visits to Sentinel Sites for Fever and Haemorrhagic 2021 and 2022 vs Weekly Threshold; Jamaica


FEVER AND JAUNDICE

Temperature of $>38^{\circ}C/100.4^{\circ}F$ (or recent history of fever) in a previously healthy person presenting with jaundice.

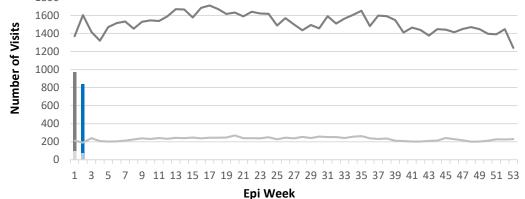
The epidemic threshold is used to confirm the emergence of an epidemic in order to implement control measures. It is calculated using the mean reported cases per week plus 2 standard deviations.

Fever and Jaundice cases: Jamaica, Weekly Threshold vs Cases 2021 and 2022

NOTIFICATIONS-All clinical sites

INVESTIGATION REPORTS- Detailed Follow up for all Class One Events

HOSPITAL ACTIVE SURVEILLANCE-30 sites. Actively pursued


ACCIDENTS

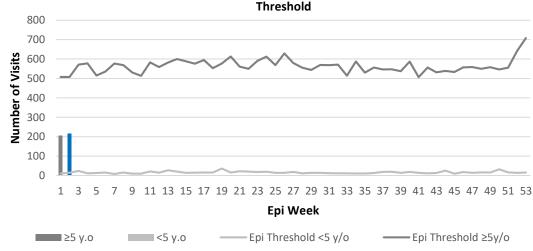
Any injury for which the cause is unintentional, e.g. motor vehicle, falls, burns, etc.

VARIATIONS OF BLUE SHOW CURRENT WEEK

Weeklt Visits to Sentinel Sites for Accident by Age Group 2022 vs. Weekly **Threshold** 1800 1600 1400

≥5 y/o Cases <5 y/o Cases</p>

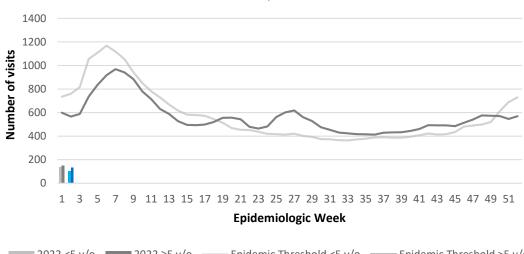
Epi threshold ≥5 y/o


- Epi threshold <5 y/o

VIOLENCE

Any injury for which the cause is intentional, e.g. gunshot wounds, stab wounds, etc.

Weekly Visits to Sentinel Sites for Violence by Age Groups 2022 vs. Weekly



GASTROENTERITIS

Inflammation of the stomach and intestines, typically resulting from bacterial toxins or viral infection and causing vomiting and diarrhoea.

Weekly visits to Sentinel Sites for Gastroenteritis All ages 2022 vs Weekly Threshold; Jamaica

2022 <5 y/o 2022 ≥5 y/o — — Epidemic Threshold <5 y/o —— Epidemic Threshold >5 y/o

NOTIFICATIONS-All clinical sites

INVESTIGATION **REPORTS-** Detailed Follow up for all Class One Events

HOSPITAL ACTIVE SURVEILLANCE-30 sites. Actively pursued

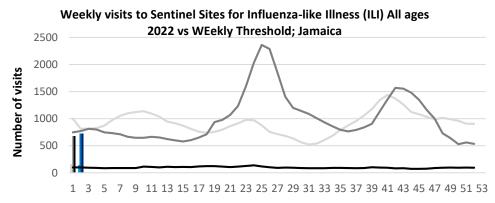
CLASS ONE NOTIFIABLE EVENTS

Comments

			. Confirn	$ned YTD^{\alpha}$	AFP Field Guides from		
	CLASS 1 EV	/ENTS	CURRENT YEAR 2022	PREVIOUS YEAR 2021	WHO indicate that for an effective surveillance system,		
	Accidental Po	isoning	0	5^{β}	detection rates for AFP		
AL	Cholera		0	0	should be 1/100,000 population under 15		
NATIONAL /INTERNATIONAL INTEREST	Dengue Hemo	orrhagic Fever ^y	See Dengue page below	See Dengue page below	years old (6 to 7) cases		
NAT T	COVID-19 (S	ARS-CoV-2)	18995	1302	annually.		
L /INTERN INTEREST	Hansen's Dise	ease (Leprosy)	0	0	Pertussis-like		
NI N	Hepatitis B		0	0	syndrome and Tetanus		
NAI I	Hepatitis C		0	0	are clinically confirmed		
\TIO	HIV/AIDS		NA	NA	classifications.		
Z	Malaria (Imp	orted)	0	0	—————————————————————————————————————		
	Meningitis (C	linically confirmed)	0	1	Fever data include		
EXOTIC/ UNUSUAL	Plague		0	0	Dengue related deaths;		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Meningococc	al Meningitis	0	0	δ Figures include all		
H IGH MORBIDITY/ MORTALITY	Neonatal Teta	inus	0	0	deaths associated with pregnancy reported for		
H I ORT	Typhoid Fever		0	0	the period.		
ΣΣ	Meningitis H/	Flu	0	0	^ε CHIKV IgM positive		
	AFP/Polio		0	0	cases		
	Congenital Ru	ıbella Syndrome	0	0	^θ Zika PCR positive		
S	Congenital Sy	philis	0	0	cases		
IMES	Fever and Rash	Measles	0	0	β Updates made to		
SPECIAL PROGRAM		Rubella	0	0	prior weeks in 2020.		
[50]	Maternal Dea	${\sf ths}^\delta$	4	2	^α Figures are cumulative totals for		
L PR	Ophthalmia N	leonatorum	4	2	all epidemiological		
CIA	Pertussis-like syndrome		0	0	weeks year to date.		
m SPE	Rheumatic Fever		0	0			
	Tetanus		0	0			
	Tuberculosis		0	1			
	Yellow Fever		0	0			
	Chikungunya ^e		0	0			
	Zika Virus ^θ		0	0	NA- Not Available		

INVESTIGATION REPORTS- Detailed Follow up for all Class One Events

HOSPITAL ACTIVE SURVEILLANCE- $30\ sites.$ Actively pursued

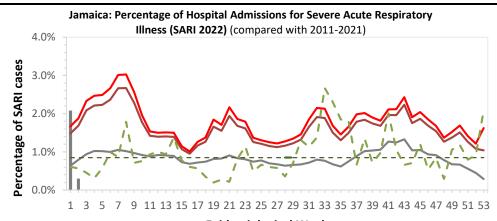


NATIONAL SURVEILLANCE UNIT INFLUENZA REPORT

EW2

January 9–15, 2022 Epidemiological Week 2

	EW 2	YTD
SARI cases	11	40
Total Influenza positive Samples	0	0
Influenza A	0	0
H3N2	0	0
H1N1pdm09	0	0
Not subtyped	0	0
Influenza B	0	0
Parainfluenza	0	0



Epidemiologic week

2022 <5 y/o 2022 5-59 y/o 2022 5-59 y/o 2022 5-59 y/o 2022 5-59 y/o Epidemic Threshold <5 — Epidemic Threshold 5-59

Epi Week Summary

During EW 2, eleven (11) SARI admissions were reported.

SARI 2022
Alert Threshold
Seasonal Trend

Epidemiological Week

Average epidemic curve (2011-2019)


Epidemic Threshold

SARI 2021

Caribbean Update EW 2

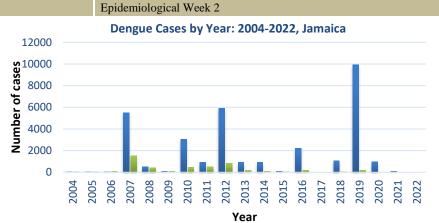
Caribbean: Influenza activity remained low. In Belize, SARS-CoV-2 and RSV detections continued to increase and in Haiti, SARS-CoV-2 activity continued elevated and increasing.

DISTRIBUTION OF INFLUENZA AND OTHER RESPIRATORY VIRUSES UNDER SURVEILLANCE BY EW, JAMAICA, 2022

6 NOTIFICATIONS-All clinical sites

INVESTIGATION REPORTS- Detailed Follow up for all Class One Events

HOSPITAL ACTIVE SURVEILLANCE-30 sites. Actively pursued

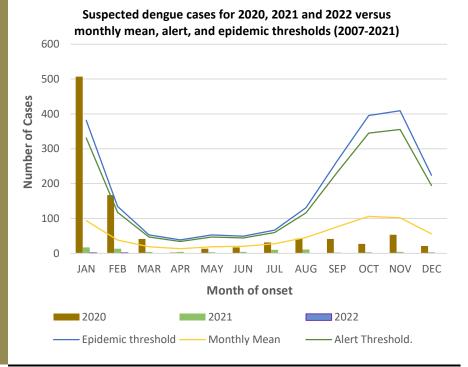


■ Confirmed DF

Dengue Bulletin

January 9-15, 2022 Epidemiological Week 2

■ Total Suspected


Reported suspected and confirmed dengue with symptom onset in week 2 of 2022

	2022*			
	EW 2	YTD		
Total Suspected Dengue Cases	0	0		
Lab Confirmed Dengue cases	0	0		
CONFIRMED Dengue Related Deaths	0	0		

Symptoms of Dengue fever Febrile phase sudden-onset fever Critical phase hypotension headache pleural effusion ascites mouth and nose bleeding gastrointestinal bleeding muscle and joint pains Recovery phase altered level of vomitina consciousness seizures itching diarrhea slow heart rate

Points to note:

- *Figure as at January 13, 2022
- Only PCR positive dengue cases are reported as confirmed.
- IgM positive cases are classified as presumed dengue.

7 NOTIFICATIONS-All clinical sites

INVESTIGATION
REPORTS- Detailed Follow
up for all Class One Events

HOSPITAL ACTIVE SURVEILLANCE-30 sites. Actively pursued

RESEARCH PAPER

Abstract

Knowledge of Prostate Cancer Screening among Males Age 40 Years and Over Attending Health Centres in Selected Parishes in Jamaica

Akela Clarke¹, Kristoff Dwyer¹, Deros Frank¹, Mikaela Martin¹, Rono Martin¹, Felisha McDonald¹, Abigail Minott¹, Christien-Estel Mourillon¹, <u>Stephanie Myrie</u>¹, Jazzmine Robinson¹, Rajay Samuels¹, Laurel Williams¹, Norman Waldron²

¹MBBS Class of 2020, Department of Community Health & Psychiatry, Faculty of Medical Sciences, The University of the West Indies, Mona, Jamaica

²Department of Community Health & Psychiatry, Faculty of Medical Sciences, The University of the West Indies, Mona, Jamaica

Aim: To determine the level of knowledge of prostate cancer and prostate cancer screening tests among males 40 years and older attending health centres in St. Ann, St. Catherine, St. Mary, Trelawny and Westmoreland.

Objectives:

To describe the prevalence of prostate cancer and determine the level of knowledge of prostate cancer risk factors, signs and symptoms and knowledge of prostate cancer screening

Method: In this cross-sectional study (n=150), participants were randomly selected from the registered males 40 years and older attending health centres across the five (5) selected parishes in Jamaica. Information was obtained through an 85-item interviewer-administered questionnaire. The questions used measured the knowledge of prostate cancer across several concepts were summed to form a composite score and the mean score and standard deviation calculated. Data analysis was aided by use of the program PSPP. A p value of < .05 was considered statistically significant.

Results: The sample of 150 participants had a 10.7% prevalence of prostate cancer. There was no significant difference in the mean knowledge scores of risk factors (p = .885), signs and symptoms (p = .262) and knowledge of screening test and procedures (p = .262) regarding prostate cancer, among men across all age groups.

Conclusion: The study revealed no statistically significant difference in mean scores for knowledge of prostate cancer and screening practices among men in the various age groups. This was far from the expected view of age being a determinant of knowledge for prostate cancer.

The Ministry of Health and Wellness 24-26 Grenada Crescent Kingston 5, Jamaica Tele: (876) 633-7924

Email: surveillance@moh.gov.jm

8 NOTIFICATIONS-All clinical sites

INVESTIGATION REPORTS- Detailed Follow up for all Class One Events

HOSPITAL ACTIVE SURVEILLANCE-30 sites. Actively pursued

